-
1 reducing process
English-German dictionary of Architecture and Construction > reducing process
-
2 reducing process
Большой англо-русский и русско-английский словарь > reducing process
-
3 reducing process
Англо-русский словарь технических терминов > reducing process
-
4 reducing process
Техника: восстановительный процесс -
5 pilger tube-reducing process
< metal> ■ Pilgerschrittwalzverfahren n DIN 8583-2English-german technical dictionary > pilger tube-reducing process
-
6 process
1) процесс2) (технологический) процесс; (технологическая) обработка3) технологический приём; способ4) технология5) режим; ход (процесса)6) обрабатывать, подвергать обработке7) подвергать анализу, анализировать•to design process — разрабатывать технологию-
acetone-acetylene process
-
acetylene process
-
Acheson process
-
acid Bessemer process
-
acid process
-
acid reclaiming process
-
acyclic process
-
Adapti investment casting process
-
additive process
-
adiabatic process
-
Aero case process
-
aerobic process
-
age-dependent process
-
air blast process
-
air-sand process
-
Alcan process
-
Al-Dip process
-
alfin process
-
alkali reclaiming process
-
alkaline process
-
Allis-Chalmers agglomeration reduction process
-
ALT process
-
aluminothermic process
-
anaerobic process
-
anamorphotic process
-
annealing-in-line process
-
anode process
-
anodic electrode process
-
AOD process
-
aqua-cast process
-
ARBED-ladle-treatment process
-
arc-air process
-
arc-remelting process
-
argon-oxygen-decarburization process
-
ASEA-SKF process
-
autoregressive process
-
averaging process
-
Azincourt process
-
azo coupling process
-
background process
-
bag process
-
BAP process
-
Barrow process
-
Basett process
-
basic Bessemer process
-
basic oxygen process
-
basic process
-
basic-arc process
-
batch process
-
biofiltration process
-
bipolar process
-
bipolar-FET process
-
bipolar-MOS process
-
BISRA degassing process
-
black-heart process
-
Blackodising process
-
blast-furnace process
-
Blaw-Knox process
-
bleaching process
-
Bochumer-Verein process
-
boiling process
-
bonding process
-
bottom-argon-process process
-
broadband random process
-
bromoil transfer process
-
bromoil process
-
bubble-column process
-
bubble-hearth process
-
buffer-slag process
-
Calmes process
-
Canadizing process
-
carbon mold process
-
carbon process
-
carbon-arc process
-
carbon-in-leach process
-
carbon-in-pulp process
-
carbothermic process
-
carbro process
-
carrier-gas degassing process
-
cascade process
-
cast shell process
-
catalytic DENO process
-
cathodic process
-
CC-CR process
-
CC-DR process
-
CC-HCR process
-
cementation process
-
cementation-in-pulp process
-
cementing process
-
centrifugal spinning process
-
cermet process
-
CESM process
-
CEVAM process
-
charge transfer process
-
chemical vapor deposition process
-
chemical-bonding process
-
Chenot process
-
china process
-
cine exposure process
-
cine process
-
CLC process
-
clean burn process
-
cloudburst process
-
CLU process
-
CMOS process
-
CNC process
-
CO2 silicate process
-
coal reduction process
-
coal to gas process
-
coal-gas-sumitomo process
-
coal-oxygen-injection process
-
COIN process
-
cold box process
-
cold doping process
-
cold process
-
cold scrap process
-
cold type process
-
collodion process
-
color process
-
concurrent processes
-
consteel process
-
consumable electrode vacuum arc melting process
-
contact process
-
continuous annealing process
-
continuous casting-cleaning rolling process
-
continuous casting-direct rolling process
-
continuous casting-hot charging and rolling process
-
continuous electroslag melting process
-
continuous metal cast process
-
continuous-on-line control process
-
continuous-time process
-
controlled pressure pouring process
-
controlled process
-
converter process
-
cooking process
-
coppering process
-
copying process
-
coupled cathodic-anodic process
-
cracking process
-
Creusot Loire Uddenholm process
-
critical process
-
cumulative process
-
cuprammonium process
-
curing process
-
CVD process
-
cyclic process
-
Cyclosteel process
-
Czochralski process
-
daguerre photographic process
-
dense-media process
-
Desco process
-
deterministic process
-
developing process
-
DH degassing process
-
diabatic process
-
diazo process
-
diffused planar process
-
diffusion process
-
diffusion transfer process
-
dip-forming process
-
direct iron process
-
direct process
-
direct reduction process
-
direct-sintering process
-
discrete-time process
-
discrete process
-
DLM process
-
Domnarvet process
-
Dored process
-
double-crucible process
-
double-epi process
-
doubling process
-
D-process
-
DR process
-
drop-molding process
-
dry adiabatic process
-
dry process
-
dry-blanch-dry process
-
duplex process
-
easy drawing process
-
EBM process
-
EBR process
-
EF-AOD process
-
electric furnace-argon oxygen decarburization process
-
electroarc process
-
electrocatalytic process
-
electrocolor process
-
electrodialysis reversal process
-
electroflux-remelting process
-
electromembrane process
-
electron-beam-melting process
-
electron-beam-refining process
-
electrophotoadhesive process
-
electrophotographic process
-
electroslag refining process
-
electroslag remelting process
-
electroslag remelt process
-
electrostatographic process
-
electrostream process
-
Elo-Vac process
-
elquench process
-
endothermic process
-
energy efficient process
-
entropy process
-
enzymatic process
-
EPIC process
-
epidemic process
-
epitaxial growth process
-
epitaxy growth process
-
ergodic process
-
ESR process
-
Estel process
-
etching process
-
exoergic process
-
exothermic process
-
extrusion-molded neck process
-
ferroprussiate process
-
Ferrox process
-
filming process
-
filtration-chlorination process
-
Finkl-Mohr process
-
FIOR process
-
first process
-
fixed-bed MTG process
-
flash steel direct reduction process
-
float process
-
float-and-sink process
-
float-zone process
-
flow process
-
fluid iron ore reduction process
-
fluid-bed MTG process
-
fluidized roasting process
-
fluid-sand process
-
FMC coke process
-
foaming process
-
foehn process
-
food-machinery and chemical coke process
-
foreground process
-
Foren process
-
FOS process
-
freeze concentration process
-
fuel-oxygen-scrap process
-
full-mold process
-
fusion-casting process
-
Futacuchi process
-
Gaussian process
-
Gero mold degassing process
-
Gero vacuum casting process
-
GGS process
-
girbitol process
-
gradual reduction process
-
growing process
-
growth process
-
gypsum-sulfuric acid process
-
Hall electrolytic process
-
Harris process
-
hazardous process
-
H-coal process
-
heat-transfer process
-
heavy-media process
-
hibernating process
-
HI-GAS process
-
high-frequency induction process
-
HIP process
-
H-iron process
-
Hoope process
-
hot isostatic pressing process
-
hot process
-
hot-metal process
-
hot-metal-and-scrap process
-
hot-type process
-
hydrogasification process
-
hydrotype process
-
HyL process
-
IC-DR process
-
image process
-
imbibition process
-
immiscible displacement process
-
implantation process
-
impurity doping process
-
in-bulk process
-
inchrome process
-
in-draw process
-
inductoslag-melting process
-
ingot casting direct rolling process
-
injection molding process
-
in-line process
-
Inred process
-
interpolation process
-
investment process
-
ion-implantation process
-
irreversible process
-
isentropic process
-
ISM process
-
isobaric process
-
isochoric process
-
isoenthalpic process
-
isoentropic process
-
isometric process
-
isoplanar process
-
isothermal process
-
iterative process
-
jet-expanding process
-
Kaldo process
-
katadyn process
-
Kawasaki-bottom-oxygen-process process
-
Kawasaki-Gas-Lime-Injection process
-
K-BOP process
-
KEK process
-
KG-LI process
-
kiln-reduction process
-
KIVCET cyclone smelting process
-
KIVCET process
-
knit-deknit process
-
koetherizing process
-
KR process
-
kraft process
-
lance bubbling equilibrium process
-
LBE process
-
LD-AB process
-
LD-AC process
-
LD-AOD process
-
LD-argon bottom process
-
LD-argon oxygen decarburization process
-
LD-CB process
-
LD-circle lance process
-
LD-CL process
-
LD-combination blow process
-
LD-HC top and botton blowing process
-
LDK process
-
LD-Kawasaki-Gas process
-
LD-KG process
-
LD-OB process
-
LD-OTB process
-
LD-oxygen bottom process
-
LD-oxygen-top-bottom process
-
lift-off process
-
liquefaction process
-
liquid gas plug process
-
liquid-phase process
-
loop transfer process
-
lost core process
-
low-waste technological process
-
LSI process
-
LVR process
-
LVS process
-
Mannesmann powder process
-
mapping process
-
Markovian process
-
Markov process
-
masking process
-
matte fuming process
-
melting process
-
mercast process
-
Midland-Ross process
-
Midrex process
-
migration process
-
miscible displacement process
-
miscible plug process
-
mixed autoregressive-moving average process
-
moist adiabatic process
-
Molynutz process
-
monochrome process
-
monolithic process
-
MOS process
-
MOSFET process
-
motion-picture process
-
moving average process
-
narrowband random process
-
Neely process
-
negative-positive process
-
Nitemper process
-
no pickle process
-
nonflow process
-
non-Gaussian process
-
Nord-Fuvo process
-
Nu-iron process
-
OBM process
-
OG process
-
OLP converter process
-
one-way process
-
open-hearth process
-
orbitread process
-
ore process
-
Orthoflow cracking process
-
Orthoforming process
-
orthogonal increment process
-
oxidation process
-
oxide-isolated process
-
oxygen-blow process
-
oxygen-gas process
-
oxygen-lancing process
-
oxygen-steelmaking process
-
packaging process
-
pad-batch dyeing process
-
pad-dry dyeing process
-
pad-jig dyeing process
-
pad-roll dyeing process
-
pad-steam dyeing process
-
pad-steam vat-print process
-
PAMCO-hot-alloy process
-
parent process
-
PCR process
-
Perrin process
-
PHA process
-
phonon process
-
photoelectric process
-
photomechanical process
-
photovoltaic process
-
pig iron-scrap process
-
pig-and-ore process
-
pigment padding dying process
-
pigment padding process
-
pigment process
-
pinatype process
-
planar process
-
plasma etching process
-
plasma etch process
-
plasma process
-
plasma-arc process
-
Plasmamelt process
-
Plasmared process
-
plaster mold process
-
plastic wirecut process
-
polytropic process
-
powder silicon ribbon process
-
power-press process
-
prepolymer process
-
prepress processes
-
pressure-driven membrane process
-
primuline process
-
propane-acid process
-
pulsating mixing process
-
Purex process
-
pushbench process
-
Q-BOP process
-
QDT process
-
quality basic oxygen process process
-
quasi-independent processes
-
quick and direct tapping process
-
ram process
-
random process
-
rapid solidification plasma deposition process
-
rayon continuous process
-
receiving process
-
reclamator reclaiming process
-
recurrent process
-
redox process
-
reducing process
-
reduction-smelting process
-
relaxation process
-
repetitive process
-
reproduction process
-
reversal process
-
reversible process
-
RH process
-
RH-OB process
-
ribbon process
-
R-N direct-reduction process
-
roasting-sintering process
-
roast-leaching process
-
robot-controlled process
-
rongalit-potash process
-
rotor process
-
rustless process
-
sample process
-
schoop process
-
scrap-and-pig process
-
scrap-conditioning process
-
scrap-ore process
-
screen printed process
-
self-developing process
-
self-healing process
-
semibatch process
-
semiconductor process
-
sending process
-
Sendzimir coating process
-
sequential process
-
silicon-gate MOS process
-
silicon-gate process
-
silk-screen process
-
single-pumpdown process
-
SIP process
-
skein spinning process
-
Skinner multiple-hearth process
-
slag minimum process
-
slip-casting process
-
slow down process
-
SLPM process
-
SL-RN metallization process
-
SL-RN reduction process
-
solid source diffusion process
-
solution regrowth process
-
solvent extraction-electrowinning process
-
solvent plug process
-
SOS process
-
spin-draw-texturizing process
-
spinylock process
-
sponge iron process
-
spontaneous process
-
Stanal process
-
stationary random process
-
STB process
-
steady-flow process
-
steam-blow process
-
steelmaking process
-
Stelmor process
-
step and repeat process
-
stochastic process
-
stuffer box process
-
submerged arc process
-
subtractive process
-
suck-and-blow process
-
Sulf BT process
-
Sulfinuz process
-
Sumitomo-slag all recycling process
-
Sumitomo-top-bottom process
-
Sursulf process
-
system process
-
TBM process
-
T-die process
-
Technamation process
-
thermal DeNOx process
-
Therm-i-Vac process
-
Thermo-Flow process
-
thermoplastic process
-
Thomas process
-
Thorex process
-
three-color process
-
Thyssen-blast-metallurgy process
-
Tifran process
-
tightly coupled processes
-
time-varying process
-
trichromatic process
-
triplex process
-
Tropenas converter process
-
Tufftride process
-
Tufftride TF1 process
-
uncertain process
-
user process
-
vacuum arc remelting process
-
vacuum casting process
-
vacuum deoxidation process
-
vacuum induction refining process
-
vacuum stream-droplet process
-
vacuum-arc degassing process
-
vacuum-carbodeoxidation process
-
vacuum-carbonate process
-
vacuum-induction melting process
-
vacuum-melting process
-
vacuum-metallothermic process
-
vacuum-oxygen-decarburization process
-
VAD process
-
VAR process
-
VAW process
-
VHSIC process
-
vigom process
-
VIR process
-
viscose process
-
visual process
-
VLSI process
-
VOD process
-
waiting process
-
water gas process
-
waterfall process
-
wet process
-
white-heart process
-
Zinal process
-
zinc distilling process -
7 process
1) способ (патентоспособный класс изобретений - определенная последовательность операций, выполняемых с соблюдением определенных условий и приводящих к получению определенного эффекта)2) судебный процесс; возбуждать процесс•- process of making a product
- process of manufacture
- process of reducing to practice
- process of using a product
- advantageous process
- appellate process
- arbitral process
- disclosed process
- examination process
- four-color process
- information process
- mental processes
- patentable process
- patent appellate process
- patented process
- secret process
- terminal process
- unpatentable process
- unpatented process* * *способ (патентоспособный класс изобретений; определенная последовательность операций, выполняемых с соблюдением определенных условий и приводящих к получению определенного эффекта; патентоспособными объектами являются устройства, способы, вещества, а не аппараты, машины, методы и пр.)—————см. method -
8 process of reducing to practice
Универсальный англо-русский словарь > process of reducing to practice
-
9 process of reducing to practice
-
10 insulation (process)
изоляция (процесс)
—
[ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]EN
insulation (process)
The process of preventing or reducing the transmission of electricity, heat, or sound to or from a body, device, or region by surrounding it with a nonconducting material. (Source: CED)
[http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]Тематики
EN
DE
FR
Англо-русский словарь нормативно-технической терминологии > insulation (process)
-
11 bleaching process
процесс отбеливания
—
[ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]EN
bleaching process
1) Removing colored components from a textile. Common bleaches are hydrogen peroxide, sodium hypochloride, and sodium chlorite. 2) The brightening and delignification of pulp by the addition of oxidizing chemicals such as chlorine or reducing chemicals such as sodium hypochloride. (Source: LEE)
[http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]Тематики
EN
DE
FR
Англо-русский словарь нормативно-технической терминологии > bleaching process
-
12 восстановительный процесс
Англо-русский словарь технических терминов > восстановительный процесс
-
13 IMCC
интеллектуальный центр управления электродвигателями
-
[Интент]Параллельные тексты EN-RU
iMCC ( Intelligent Motor Control Center) control switchboards are low voltage switchboards dedicated to energy distribution, as well as control and protection of motors. They are used in continuous and semi-continuous processes, in which it is necessary to group the motor starters together in one place for operational and maintenance reasons.
Integration of motor starters in iMCC switchboards
iMCC control switchboards make the work of operation and maintenance teams easier by improving the availability of the process, via:
• Control of motor starters using wire-to-wire cabling or via remote I/O located as close as possible to the starters and connected on the network
• Protection of the motors using an intelligent electronic protection relay. This provides more precise protection of the motors (analysis of operating conditions and alarm thresholds before tripping, etc).
These two functions can be grouped together in a single product, the electronic protection module. In this case, the protection relay module manages and transmits all this control and protection information directly.
Advantages of iMCC switchboards
iMCC control switchboards provide a high level of process availability while ensuring the safety of property and personnel. This solution decreases the number of process stoppages and their duration, reduces maintenance, reduces and repairs costs and optimizes process productivity:
• Reduction of process stoppages as a result of detailed alarms and diagnostics that enable staff to react before the motor starter trips, or react more quickly if it does trip
• Rapid diagnostics due to the availability of more detailed information on the stoppage conditions
• Analysis of stoppage logs using statistics from the electronic protection module.
iMCC control switchboards make installations easier to create, by reducing engineering and debugging time:
• Rapid parameter-setting as a result of local or remote downloading
• Analysis of phenomena via alarms, detailed diagnostics and stoppage logs (statistics embedded in the electronic protection module).
[Schneider Electric]iMCC ( Интеллектуальный центр управления электродвигателями) представляет собой низковольтное комплектное устройство (НКУ) распределения электроэнергии, защиты и управления электродвигателями. Такие НКУ используются для управления непрерывными и полунепрерывными технологическими процессами, в которых для обеспечения эффективной эксплуатации и технического обслуживания необходимо, чтобы пускатели были размещены в одном месте.
Тематики
- НКУ (шкафы, пульты,...)
- управление электродвигателями
EN
интеллектуальный центр управления электродвигателями
-
[Интент]Параллельные тексты EN-RU
iMCC ( Intelligent Motor Control Center) control switchboards are low voltage switchboards dedicated to energy distribution, as well as control and protection of motors. They are used in continuous and semi-continuous processes, in which it is necessary to group the motor starters together in one place for operational and maintenance reasons.
Integration of motor starters in iMCC switchboards
iMCC control switchboards make the work of operation and maintenance teams easier by improving the availability of the process, via:
• Control of motor starters using wire-to-wire cabling or via remote I/O located as close as possible to the starters and connected on the network
• Protection of the motors using an intelligent electronic protection relay. This provides more precise protection of the motors (analysis of operating conditions and alarm thresholds before tripping, etc).
These two functions can be grouped together in a single product, the electronic protection module. In this case, the protection relay module manages and transmits all this control and protection information directly.
Advantages of iMCC switchboards
iMCC control switchboards provide a high level of process availability while ensuring the safety of property and personnel. This solution decreases the number of process stoppages and their duration, reduces maintenance, reduces and repairs costs and optimizes process productivity:
• Reduction of process stoppages as a result of detailed alarms and diagnostics that enable staff to react before the motor starter trips, or react more quickly if it does trip
• Rapid diagnostics due to the availability of more detailed information on the stoppage conditions
• Analysis of stoppage logs using statistics from the electronic protection module.
iMCC control switchboards make installations easier to create, by reducing engineering and debugging time:
• Rapid parameter-setting as a result of local or remote downloading
• Analysis of phenomena via alarms, detailed diagnostics and stoppage logs (statistics embedded in the electronic protection module).
[Schneider Electric]iMCC ( Интеллектуальный центр управления электродвигателями) представляет собой низковольтное комплектное устройство (НКУ) распределения электроэнергии, защиты и управления электродвигателями. Такие НКУ используются для управления непрерывными и полунепрерывными технологическими процессами, в которых для обеспечения эффективной эксплуатации и технического обслуживания необходимо, чтобы пускатели были размещены в одном месте.
Тематики
- НКУ (шкафы, пульты,...)
- управление электродвигателями
EN
Англо-русский словарь нормативно-технической терминологии > IMCC
-
14 Deville, Henri Etienne Sainte-Claire
SUBJECT AREA: Metallurgy[br]b. 11 March 1818 St Thomas, Virgin Islandsd. 1 July 1881 Boulogne-sur-Seine, France[br]French chemist and metallurgist, pioneer in the large-scale production of aluminium and other light metals.[br]Deville was the son of a prosperous shipowner with diplomatic duties in the Virgin Islands. With his elder brother Charles, who later became a distinguished physicist, he was sent to Paris to be educated. He took his degree in medicine in 1843, but before that he had shown an interest in chemistry, due particularly to the lectures of Thenard. Two years later, with Thenard's influence, he was appointed Professor of Chemistry at Besançon. In 1851 he was able to return to Paris as Professor at the Ecole Normale Supérieure. He remained there for the rest of his working life, greatly improving the standard of teaching, and his laboratory became one of the great research centres of Europe. His first chemical work had been in organic chemistry, but he then turned to inorganic chemistry, specifically to improve methods of producing the new and little-known metal aluminium. Essentially, the process consisted of forming sodium aluminium trichloride and reducing it with sodium to metallic aluminium. He obtained sodium in sufficient quantity by reducing sodium carbonate with carbon. In 1855 he exhibited specimens of the metal at the Paris Exhibition, and the same year Napoleon III asked to see them, with a view to using it for breastplates for the Army and for spoons and forks for State banquets. With the resulting government support, he set up a pilot plant at Jarvel to develop the process, and then set up a small company, the Société d'Aluminium at Nan terre. This raised the output of this attractive and useful metal, so it could be used more widely than for the jewellery to which it had hitherto been restricted. Large-scale applications, however, had to await the electrolytic process that began to supersede Deville's in the 1890s. Deville extended his sodium reduction method to produce silicon, boron and the light metals magnesium and titanium. His investigations into the metallurgy of platinum revolutionized the industry and led in 1872 to his being asked to make the platinum-iridium (90–10) alloy for the standard kilogram and metre. Deville later carried out important work in high-temperature chemistry. He grieved much at the death of his brother Charles in 1876, and his retirement was forced by declining health in 1880; he did not survive for long.[br]BibliographyDeville published influential books on aluminium and platinum; these and all his publications are listed in the bibliography in the standard biography by J.Gray, 1889, Henri Sainte-Claire Deville: sa vie et ses travaux, Paris.Further ReadingM.Daumas, 1949, "Henri Sainte-Claire Deville et les débuts de l'industrie de l'aluminium", Rev.Hist.Sci 2:352–7.J.C.Chaston, 1981, "Henri Sainte-Claire Deville: his outstanding contributions to the chemistry of the platinum metals", Platinum Metals Review 25:121–8.LRDBiographical history of technology > Deville, Henri Etienne Sainte-Claire
-
15 suction
1) (the action of sucking.) sugning2) (the process of creating a vacuum by reducing air pressure on the surface of a liquid so that it can be drawn up into a tube etc, or between two surfaces, eg a rubber disc and a wall, so that they stick together.) opsugning; oppumpning* * *1) (the action of sucking.) sugning2) (the process of creating a vacuum by reducing air pressure on the surface of a liquid so that it can be drawn up into a tube etc, or between two surfaces, eg a rubber disc and a wall, so that they stick together.) opsugning; oppumpning -
16 material
материал; вещество || материальный; вещественныйmaterial being cut — материал, обрабатываемый резанием; разрезаемый материал
material being fed — подаваемый материал, продвигаемый материал
material being machined — материал, обрабатываемый на станке, материал, обрабатываемый на металлорежущем станке
- abrasive materialmaterial to be routed — материал, обрабатываемый на быстроходном фасонно-фрезерном станке
- absorbing material
- absorption material
- acidproof material
- acid-resisting material
- activated material
- active material
- add material
- adding material
- adhering molding material
- alloy materials
- alloying material
- alternate material
- antifriction material
- antislip material
- architectural material
- as-received material
- audiovisual material
- auxiliary material
- backing material
- bad material
- balled material
- base material
- basic material
- bead material
- bearing material
- best quality materials
- binder material
- binding material
- bonding material
- brazing material
- brittle material
- building material
- bulk material
- burden material
- carbide material
- carbon electric material
- carbon electrical material
- carbonaceous reducing material
- carburizing material
- casthouse materials
- categorized material
- ceramic material
- certified reference material
- charge material
- charging material
- clad material
- cleansing material
- coating material
- coiled material
- cold-charged material
- cold-worked material
- combustible material
- commercial material
- composite material
- composite metallic material
- composition material
- compound material
- conducting material
- contact conductor material
- container material
- controlled-porosity material
- core material
- corrosion-resisting material
- creep strained material
- critical material
- crucible material
- cushioning material
- cutting material
- cutting-tool material
- cycled material
- damping material
- deep-coat material
- defective material
- defense material
- depleated material
- diamagnetic material
- difficult-to-cut material
- difficult-to-machine material
- dispersion-hardened material
- dispersion-strengthened material
- dissimilar materials
- dissipative material
- document material
- dolomite-based material
- ductile material
- easy-to-cut material
- elastomeric material
- electric contact material
- electrical engineering material
- electrically active polymeric material
- electrically insulating material
- electrode material
- electrotechnical material
- elongated material
- emitting material
- engineering materials
- enriched material
- environmentally resilient material
- epoxy matrix material
- excessive uncut material
- extraneous material
- extreme pressure material
- facing material
- feed material
- ferrimagnetic material
- ferroelectric material
- ferromagnetic material
- ferrous materials
- fettling material
- fiber material
- fiber-reinforced material
- fiber-strengthened material
- fibrous composite material
- fibrous material
- filling material
- fine material
- flexible-heavy material
- fluid-extruded material
- fluorescent material
- fluxing material
- foreign material
- free-cutting material
- free-machining material
- friction material
- fuel material
- fully dense material
- fully fired material
- fully flattened material
- grain material
- granular material
- grinding material
- half-finished material
- hard material
- hard-magnetic material
- hard-to-cut material
- hard-to-machine material
- hard-to-punch material
- heat-absorbing material
- heat-conductive material
- heat-insulating material
- heat-resistant material
- heat-sensitive material
- heat-transfer material
- heavily alloyed material
- heavy material
- heavy-duty material
- heavy-gravity material
- high-coercivity material
- high-conductivity material
- high-force material
- high-friction material
- high-melting-point material
- high-resistivity material
- high-strength material
- high-technology materials
- high-temperature-resistant material
- high-tempering temperature material
- high-tensile strength material
- honest material
- host material
- hot-finished material
- hyperconductor material
- ideally plastic material
- imperfect material
- incombustible material
- incoming materials
- incompressible material
- inert material
- inflammable material
- ingoing material
- in-process material
- instructional material
- insulating material
- insulation material
- intermediate material
- iron-bearing material
- isotropic material
- jointing material
- lagging material
- laser material
- light material
- light-duty material
- light-stiff material
- limy material
- lining material
- loading material
- loose material
- low-ash reducing material
- low-coercivity material
- low-density material
- low-expansion material
- low-grade material
- low-strength material
- low-temperature material
- low-tensile strength material
- luminescent material
- lump material
- magnetic material
- magnetostrictive material
- material of construction
- material of high-absorbing power
- material of high-electric conductivity
- material of low-absorbing power
- material of low-machinability rating
- matrix material
- medium-strength material
- mix material
- moderator material
- mold material
- molding material
- multilayer bearing material
- multilayer conductor material
- multilayer material
- multimedia materials
- natural material
- no-coolant material
- noise-attenuating material
- nonabsorbent material
- noncombustible material
- nonconducting material
- noncrystalline material
- nonferromagnetic material
- nonferrous materials
- nonmagnetic material
- nonproduction material
- off-gage material
- oil-attracting material
- original material
- oversized material
- oxidizing material
- packing material
- paint material
- paramagnetic material
- parent material
- particulate material
- perfect material
- phase change material
- photoelectric material
- piezoelectric material
- plastic material
- plus material
- PM material
- polycrystalline material
- polymeric material
- poor heat conducting material
- poor machinability material
- pore-forming material
- positive active material
- powder material
- powder metallurgical material
- powdered material
- powdered refractory material
- preformed material
- prehardened material
- prepared burden materials
- prestrained material
- problem material
- radioactive material
- random material
- raw material
- recycled material
- reducing material
- reference material
- refractory backing material
- refractory conductor material
- refractory material
- refused material
- reinforced material
- rejected material
- remove material
- resistive material
- return material
- rework material
- roll-compacted powder material
- rolled sheet material
- rolling material
- rust-inhibiting material
- saleable material
- sandwiched material
- sandwich-type material
- scattering material
- scrap material
- sealant material
- sealing material
- secondary raw materials
- section material
- semiconducting material
- semiconductive material
- semifinished material
- semimanufactured material
- sheet material
- sheet-like material
- shell-mold material
- shield material
- shielding material
- shipbuilding material
- short-chipping material
- siliceous material
- siliceous refractory material
- sintered bearing material
- sintered material
- sintered metal-powder material
- slag-forming material
- slagging material
- soft material
- soft-magnetic material
- solid material
- sorted secondary raw materials
- sound-absorbing material
- sound-deadening material
- spent material
- spongy material
- sprayed material
- square-loop material
- standard cubic material
- standard material
- starting material
- stock material
- stopping material
- strain-hardened material
- strain-rate-resistive material
- strong material
- structural material
- stuffing material
- substrate material
- superconducting material
- superconductor material
- support material
- surface-active material
- suspended material
- tar-dolomite material
- target material
- tar-stabilized dolomite material
- test material
- test piece material
- textured material
- thermal insulating material
- thermally insulating material
- thermal-resistant material
- thermoplastic material
- thermosetting material
- titanium-base material
- tooling material
- tough material
- tough-to-machine material
- tracer material
- undersize material
- unprotected material
- unsized burden material
- vibration-deadening material
- virgin material
- viscoelastic material
- vitrified material
- waste material
- wearable material
- web material
- weighing material
- weld material
- welding wire material
- work material
- work-hardening material
- worthless material
- xerographic materialsEnglish-Russian dictionary of mechanical engineering and automation > material
-
17 intelligent motor control center
интеллектуальный центр управления электродвигателями
-
[Интент]Параллельные тексты EN-RU
iMCC ( Intelligent Motor Control Center) control switchboards are low voltage switchboards dedicated to energy distribution, as well as control and protection of motors. They are used in continuous and semi-continuous processes, in which it is necessary to group the motor starters together in one place for operational and maintenance reasons.
Integration of motor starters in iMCC switchboards
iMCC control switchboards make the work of operation and maintenance teams easier by improving the availability of the process, via:
• Control of motor starters using wire-to-wire cabling or via remote I/O located as close as possible to the starters and connected on the network
• Protection of the motors using an intelligent electronic protection relay. This provides more precise protection of the motors (analysis of operating conditions and alarm thresholds before tripping, etc).
These two functions can be grouped together in a single product, the electronic protection module. In this case, the protection relay module manages and transmits all this control and protection information directly.
Advantages of iMCC switchboards
iMCC control switchboards provide a high level of process availability while ensuring the safety of property and personnel. This solution decreases the number of process stoppages and their duration, reduces maintenance, reduces and repairs costs and optimizes process productivity:
• Reduction of process stoppages as a result of detailed alarms and diagnostics that enable staff to react before the motor starter trips, or react more quickly if it does trip
• Rapid diagnostics due to the availability of more detailed information on the stoppage conditions
• Analysis of stoppage logs using statistics from the electronic protection module.
iMCC control switchboards make installations easier to create, by reducing engineering and debugging time:
• Rapid parameter-setting as a result of local or remote downloading
• Analysis of phenomena via alarms, detailed diagnostics and stoppage logs (statistics embedded in the electronic protection module).
[Schneider Electric]iMCC ( Интеллектуальный центр управления электродвигателями) представляет собой низковольтное комплектное устройство (НКУ) распределения электроэнергии, защиты и управления электродвигателями. Такие НКУ используются для управления непрерывными и полунепрерывными технологическими процессами, в которых для обеспечения эффективной эксплуатации и технического обслуживания необходимо, чтобы пускатели были размещены в одном месте.
Тематики
- НКУ (шкафы, пульты,...)
- управление электродвигателями
EN
Англо-русский словарь нормативно-технической терминологии > intelligent motor control center
-
18 Eastman, George
SUBJECT AREA: Photography, film and optics[br]b. 12 July 1854 Waterville, New York, USAd. 14 March 1932 Rochester, New York, USA[br]American industrialist and pioneer of popular photography.[br]The young Eastman was a clerk-bookkeeper in the Rochester Savings Bank when in 1877 he took up photography. Taking lessons in the wet-plate process, he became an enthusiastic amateur photographer. However, the cumbersome equipment and noxious chemicals used in the process proved an obstacle, as he said, "It seemed to be that one ought to be able to carry less than a pack-horse load." Then he came across an account of the new gelatine dry-plate process in the British Journal of Photography of March 1878. He experimented in coating glass plates with the new emulsions, and was soon so successful that he decided to go into commercial manufacture. He devised a machine to simplify the coating of the plates, and travelled to England in July 1879 to patent it. In April 1880 he prepared to begin manufacture in a rented building in Rochester, and contacted the leading American photographic supply house, E. \& H.T.Anthony, offering them an option as agents. A local whip manufacturer, Henry A.Strong, invested $1,000 in the enterprise and the Eastman Dry Plate Company was formed on 1 January 1881. Still working at the Savings Bank, he ran the business in his spare time, and demand grew for the quality product he was producing. The fledgling company survived a near disaster in 1882 when the quality of the emulsions dropped alarmingly. Eastman later discovered this was due to impurities in the gelatine used, and this led him to test all raw materials rigorously for quality. In 1884 the company became a corporation, the Eastman Dry Plate \& Film Company, and a new product was announced. Mindful of his desire to simplify photography, Eastman, with a camera maker, William H.Walker, designed a roll-holder in which the heavy glass plates were replaced by a roll of emulsion-coated paper. The holders were made in sizes suitable for most plate cameras. Eastman designed and patented a coating machine for the large-scale production of the paper film, bringing costs down dramatically, the roll-holders were acclaimed by photographers worldwide, and prizes and medals were awarded, but Eastman was still not satisfied. The next step was to incorporate the roll-holder in a smaller, hand-held camera. His first successful design was launched in June 1888: the Kodak camera. A small box camera, it held enough paper film for 100 circular exposures, and was bought ready-loaded. After the film had been exposed, the camera was returned to Eastman's factory, where the film was removed, processed and printed, and the camera reloaded. This developing and printing service was the most revolutionary part of his invention, since at that time photographers were expected to process their own photographs, which required access to a darkroom and appropriate chemicals. The Kodak camera put photography into the hands of the countless thousands who wanted photographs without complications. Eastman's marketing slogan neatly summed up the advantage: "You Press the Button, We Do the Rest." The Kodak camera was the last product in the design of which Eastman was personally involved. His company was growing rapidly, and he recruited the most talented scientists and technicians available. New products emerged regularly—notably the first commercially produced celluloid roll film for the Kodak cameras in July 1889; this material made possible the introduction of cinematography a few years later. Eastman's philosophy of simplifying photography and reducing its costs continued to influence products: for example, the introduction of the one dollar, or five shilling, Brownie camera in 1900, which put photography in the hands of almost everyone. Over the years the Eastman Kodak Company, as it now was, grew into a giant multinational corporation with manufacturing and marketing organizations throughout the world. Eastman continued to guide the company; he pursued an enlightened policy of employee welfare and profit sharing decades before this was common in industry. He made massive donations to many concerns, notably the Massachusetts Institute of Technology, and supported schemes for the education of black people, dental welfare, calendar reform, music and many other causes, he withdrew from the day-to-day control of the company in 1925, and at last had time for recreation. On 14 March 1932, suffering from a painful terminal cancer and after tidying up his affairs, he shot himself through the heart, leaving a note: "To my friends: My work is done. Why wait?" Although Eastman's technical innovations were made mostly at the beginning of his career, the organization which he founded and guided in its formative years was responsible for many of the major advances in photography over the years.[br]Further ReadingC.Ackerman, 1929, George Eastman, Cambridge, Mass.B.Coe, 1973, George Eastman and the Early Photographers, London.BC -
19 Language
Philosophy is written in that great book, the universe, which is always open, right before our eyes. But one cannot understand this book without first learning to understand the language and to know the characters in which it is written. It is written in the language of mathematics, and the characters are triangles, circles, and other figures. Without these, one cannot understand a single word of it, and just wanders in a dark labyrinth. (Galileo, 1990, p. 232)It never happens that it [a nonhuman animal] arranges its speech in various ways in order to reply appropriately to everything that may be said in its presence, as even the lowest type of man can do. (Descartes, 1970a, p. 116)It is a very remarkable fact that there are none so depraved and stupid, without even excepting idiots, that they cannot arrange different words together, forming of them a statement by which they make known their thoughts; while, on the other hand, there is no other animal, however perfect and fortunately circumstanced it may be, which can do the same. (Descartes, 1967, p. 116)Human beings do not live in the object world alone, nor alone in the world of social activity as ordinarily understood, but are very much at the mercy of the particular language which has become the medium of expression for their society. It is quite an illusion to imagine that one adjusts to reality essentially without the use of language and that language is merely an incidental means of solving specific problems of communication or reflection. The fact of the matter is that the "real world" is to a large extent unconsciously built on the language habits of the group.... We see and hear and otherwise experience very largely as we do because the language habits of our community predispose certain choices of interpretation. (Sapir, 1921, p. 75)It powerfully conditions all our thinking about social problems and processes.... No two languages are ever sufficiently similar to be considered as representing the same social reality. The worlds in which different societies live are distinct worlds, not merely the same worlds with different labels attached. (Sapir, 1985, p. 162)[A list of language games, not meant to be exhaustive:]Giving orders, and obeying them- Describing the appearance of an object, or giving its measurements- Constructing an object from a description (a drawing)Reporting an eventSpeculating about an eventForming and testing a hypothesisPresenting the results of an experiment in tables and diagramsMaking up a story; and reading itPlay actingSinging catchesGuessing riddlesMaking a joke; and telling itSolving a problem in practical arithmeticTranslating from one language into anotherLANGUAGE Asking, thanking, cursing, greeting, and praying-. (Wittgenstein, 1953, Pt. I, No. 23, pp. 11 e-12 e)We dissect nature along lines laid down by our native languages.... The world is presented in a kaleidoscopic flux of impressions which has to be organized by our minds-and this means largely by the linguistic systems in our minds.... No individual is free to describe nature with absolute impartiality but is constrained to certain modes of interpretation even while he thinks himself most free. (Whorf, 1956, pp. 153, 213-214)We dissect nature along the lines laid down by our native languages.The categories and types that we isolate from the world of phenomena we do not find there because they stare every observer in the face; on the contrary, the world is presented in a kaleidoscopic flux of impressions which has to be organized by our minds-and this means largely by the linguistic systems in our minds.... We are thus introduced to a new principle of relativity, which holds that all observers are not led by the same physical evidence to the same picture of the universe, unless their linguistic backgrounds are similar or can in some way be calibrated. (Whorf, 1956, pp. 213-214)9) The Forms of a Person's Thoughts Are Controlled by Unperceived Patterns of His Own LanguageThe forms of a person's thoughts are controlled by inexorable laws of pattern of which he is unconscious. These patterns are the unperceived intricate systematizations of his own language-shown readily enough by a candid comparison and contrast with other languages, especially those of a different linguistic family. (Whorf, 1956, p. 252)It has come to be commonly held that many utterances which look like statements are either not intended at all, or only intended in part, to record or impart straightforward information about the facts.... Many traditional philosophical perplexities have arisen through a mistake-the mistake of taking as straightforward statements of fact utterances which are either (in interesting non-grammatical ways) nonsensical or else intended as something quite different. (Austin, 1962, pp. 2-3)In general, one might define a complex of semantic components connected by logical constants as a concept. The dictionary of a language is then a system of concepts in which a phonological form and certain syntactic and morphological characteristics are assigned to each concept. This system of concepts is structured by several types of relations. It is supplemented, furthermore, by redundancy or implicational rules..., representing general properties of the whole system of concepts.... At least a relevant part of these general rules is not bound to particular languages, but represents presumably universal structures of natural languages. They are not learned, but are rather a part of the human ability to acquire an arbitrary natural language. (Bierwisch, 1970, pp. 171-172)In studying the evolution of mind, we cannot guess to what extent there are physically possible alternatives to, say, transformational generative grammar, for an organism meeting certain other physical conditions characteristic of humans. Conceivably, there are none-or very few-in which case talk about evolution of the language capacity is beside the point. (Chomsky, 1972, p. 98)[It is] truth value rather than syntactic well-formedness that chiefly governs explicit verbal reinforcement by parents-which renders mildly paradoxical the fact that the usual product of such a training schedule is an adult whose speech is highly grammatical but not notably truthful. (R. O. Brown, 1973, p. 330)he conceptual base is responsible for formally representing the concepts underlying an utterance.... A given word in a language may or may not have one or more concepts underlying it.... On the sentential level, the utterances of a given language are encoded within a syntactic structure of that language. The basic construction of the sentential level is the sentence.The next highest level... is the conceptual level. We call the basic construction of this level the conceptualization. A conceptualization consists of concepts and certain relations among those concepts. We can consider that both levels exist at the same point in time and that for any unit on one level, some corresponding realizate exists on the other level. This realizate may be null or extremely complex.... Conceptualizations may relate to other conceptualizations by nesting or other specified relationships. (Schank, 1973, pp. 191-192)The mathematics of multi-dimensional interactive spaces and lattices, the projection of "computer behavior" on to possible models of cerebral functions, the theoretical and mechanical investigation of artificial intelligence, are producing a stream of sophisticated, often suggestive ideas.But it is, I believe, fair to say that nothing put forward until now in either theoretic design or mechanical mimicry comes even remotely in reach of the most rudimentary linguistic realities. (Steiner, 1975, p. 284)The step from the simple tool to the master tool, a tool to make tools (what we would now call a machine tool), seems to me indeed to parallel the final step to human language, which I call reconstitution. It expresses in a practical and social context the same understanding of hierarchy, and shows the same analysis by function as a basis for synthesis. (Bronowski, 1977, pp. 127-128)t is the language donn eґ in which we conduct our lives.... We have no other. And the danger is that formal linguistic models, in their loosely argued analogy with the axiomatic structure of the mathematical sciences, may block perception.... It is quite conceivable that, in language, continuous induction from simple, elemental units to more complex, realistic forms is not justified. The extent and formal "undecidability" of context-and every linguistic particle above the level of the phoneme is context-bound-may make it impossible, except in the most abstract, meta-linguistic sense, to pass from "pro-verbs," "kernals," or "deep deep structures" to actual speech. (Steiner, 1975, pp. 111-113)A higher-level formal language is an abstract machine. (Weizenbaum, 1976, p. 113)Jakobson sees metaphor and metonymy as the characteristic modes of binarily opposed polarities which between them underpin the two-fold process of selection and combination by which linguistic signs are formed.... Thus messages are constructed, as Saussure said, by a combination of a "horizontal" movement, which combines words together, and a "vertical" movement, which selects the particular words from the available inventory or "inner storehouse" of the language. The combinative (or syntagmatic) process manifests itself in contiguity (one word being placed next to another) and its mode is metonymic. The selective (or associative) process manifests itself in similarity (one word or concept being "like" another) and its mode is metaphoric. The "opposition" of metaphor and metonymy therefore may be said to represent in effect the essence of the total opposition between the synchronic mode of language (its immediate, coexistent, "vertical" relationships) and its diachronic mode (its sequential, successive, lineal progressive relationships). (Hawkes, 1977, pp. 77-78)It is striking that the layered structure that man has given to language constantly reappears in his analyses of nature. (Bronowski, 1977, p. 121)First, [an ideal intertheoretic reduction] provides us with a set of rules"correspondence rules" or "bridge laws," as the standard vernacular has it-which effect a mapping of the terms of the old theory (T o) onto a subset of the expressions of the new or reducing theory (T n). These rules guide the application of those selected expressions of T n in the following way: we are free to make singular applications of their correspondencerule doppelgangers in T o....Second, and equally important, a successful reduction ideally has the outcome that, under the term mapping effected by the correspondence rules, the central principles of T o (those of semantic and systematic importance) are mapped onto general sentences of T n that are theorems of Tn. (P. Churchland, 1979, p. 81)If non-linguistic factors must be included in grammar: beliefs, attitudes, etc. [this would] amount to a rejection of the initial idealization of language as an object of study. A priori such a move cannot be ruled out, but it must be empirically motivated. If it proves to be correct, I would conclude that language is a chaos that is not worth studying.... Note that the question is not whether beliefs or attitudes, and so on, play a role in linguistic behavior and linguistic judgments... [but rather] whether distinct cognitive structures can be identified, which interact in the real use of language and linguistic judgments, the grammatical system being one of these. (Chomsky, 1979, pp. 140, 152-153)23) Language Is Inevitably Influenced by Specific Contexts of Human InteractionLanguage cannot be studied in isolation from the investigation of "rationality." It cannot afford to neglect our everyday assumptions concerning the total behavior of a reasonable person.... An integrational linguistics must recognize that human beings inhabit a communicational space which is not neatly compartmentalized into language and nonlanguage.... It renounces in advance the possibility of setting up systems of forms and meanings which will "account for" a central core of linguistic behavior irrespective of the situation and communicational purposes involved. (Harris, 1981, p. 165)By innate [linguistic knowledge], Chomsky simply means "genetically programmed." He does not literally think that children are born with language in their heads ready to be spoken. He merely claims that a "blueprint is there, which is brought into use when the child reaches a certain point in her general development. With the help of this blueprint, she analyzes the language she hears around her more readily than she would if she were totally unprepared for the strange gabbling sounds which emerge from human mouths. (Aitchison, 1987, p. 31)Looking at ourselves from the computer viewpoint, we cannot avoid seeing that natural language is our most important "programming language." This means that a vast portion of our knowledge and activity is, for us, best communicated and understood in our natural language.... One could say that natural language was our first great original artifact and, since, as we increasingly realize, languages are machines, so natural language, with our brains to run it, was our primal invention of the universal computer. One could say this except for the sneaking suspicion that language isn't something we invented but something we became, not something we constructed but something in which we created, and recreated, ourselves. (Leiber, 1991, p. 8)Historical dictionary of quotations in cognitive science > Language
-
20 modular data center
модульный центр обработки данных (ЦОД)
-
[Интент]Параллельные тексты EN-RU
[ http://dcnt.ru/?p=9299#more-9299]
Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.
В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.
At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.
В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.
Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.
Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.
Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.
Was there a key driver for the Generation 4 Data Center?Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
Был ли ключевой стимул для разработки дата-центра четвертого поколения?
If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.
One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:
The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:
Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.The second worst thing we can do in delivering facilities for the business is to have too much capacity online.
А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.
This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
So let’s take a high level look at our Generation 4 designЭто заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
Давайте рассмотрим наш проект дата-центра четвертого поколенияAre you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.
It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.
From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.
Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:
Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.
С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.
Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.
Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.
Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.
Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.
Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.
Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
Мы все подвергаем сомнениюIn our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.
В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
Серийное производство дата центров
In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
Невероятно энергоэффективный ЦОД
And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
Строительство дата центров без чиллеровWe have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.
Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.
By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.
Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.
Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.
Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
Gen 4 – это стандартная платформаFinally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.
Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
Главные характеристики дата-центров четвертого поколения Gen4To summarize, the key characteristics of our Generation 4 data centers are:
Scalable
Plug-and-play spine infrastructure
Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
Rapid deployment
De-mountable
Reduce TTM
Reduced construction
Sustainable measuresНиже приведены главные характеристики дата-центров четвертого поколения Gen 4:
Расширяемость;
Готовая к использованию базовая инфраструктура;
Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
Быстрота развертывания;
Возможность демонтажа;
Снижение времени вывода на рынок (TTM);
Сокращение сроков строительства;
Экологичность;Map applications to DC Class
We hope you join us on this incredible journey of change and innovation!
Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.
Использование систем электропитания постоянного тока.
Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!
На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.
Generations of Evolution – some background on our data center designsТак что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
Поколения эволюции – история развития наших дата-центровWe thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.
Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.
It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.
Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.
We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.
Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.
No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.
Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.
As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.
Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.
This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.
Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.
Тематики
Синонимы
EN
Англо-русский словарь нормативно-технической терминологии > modular data center
См. также в других словарях:
reducing process — Смотри восстановительный процесс … Энциклопедический словарь по металлургии
Reducing accreditation — process of withdrawing accreditation for Dart of the scope of accreditation (p. 3.16 ISO/IEC 17011:2004). Источник … Словарь-справочник терминов нормативно-технической документации
Process — Proc ess, n. [F. proc[ e]s, L. processus. See {Proceed}.] [1913 Webster] 1. The act of proceeding; continued forward movement; procedure; progress; advance. Long process of time. Milton. [1913 Webster] The thoughts of men are widened with the… … The Collaborative International Dictionary of English
Process milling — Process Proc ess, n. [F. proc[ e]s, L. processus. See {Proceed}.] [1913 Webster] 1. The act of proceeding; continued forward movement; procedure; progress; advance. Long process of time. Milton. [1913 Webster] The thoughts of men are widened with … The Collaborative International Dictionary of English
Process control — is a statistics and engineering discipline that deals with architectures, mechanisms, and algorithms for controlling the output of a specific process. See also control theory.For example, heating up the temperature in a room is a process that has … Wikipedia
Process Hazard Analysis — (PHA) (or, Process Hazard Evaluation) is a set of organized and systematic assessments of the potential hazards associated with an industrial process. A PHA provides information intended to assist managers and employees in making decisions for… … Wikipedia
reducing agent — n. any substance that reduces another substance, or brings about reduction, and is itself oxidized in the process … English World dictionary
reducing — noun 1. any process in which electrons are added to an atom or ion (as by removing oxygen or adding hydrogen); always occurs accompanied by oxidation of the reducing agent (Freq. 1) • Syn: ↑reduction • Derivationally related forms: ↑reduce •… … Useful english dictionary
reducing turbine — noun : a steam turbine that is used as a reducing valve to perform useful work in the process of pressure reduction … Useful english dictionary
reducing agent — Chem. a substance that causes another substance to undergo reduction and that is oxidized in the process. [1795 1805] * * * … Universalium
reducing agent — reduc′ing a′gent n. chem. a substance that causes another substance to undergo reduction and that is oxidized in the process • Etymology: 1795–1805 … From formal English to slang